The Y capacitor is needed to allow the EMI to have a way to ground from the output rather than going out and getting radiated by the output lines.
I don’t believe for a second that this is actually necessary in a way results in that spicy feeling. I do believe that it’s far cheaper to use a Y capacitor than to come up with a better filter network that works well, though.
Common mode noise filtering is either going to be purely inductive or need a Y-cap. No other way around it.
One can build lots of things out of inductors and capacitors. I bet it’s possible and even fairly straightforward to built a little network to allow high frequencies to pass from output to the two line inputs with low impedance but that has extremely high impedance at 50 and 60 Hz (and maybe even at the first few harmonics). It would add components, cost and volume.
I bet this could be done at the output side, too. And a company like Apple that values the customer experience could try to build a filter on their laptop DC inputs to reduce touch currents experienced by the user when connected to a leaky power supply. Of course, the modern design where the charging port is part of a metallic case might make this rather challenging…
(Seriously, IMO all the recent MacBook Air case designs are obnoxious. They have the touch current issue and they’re nasty feeling and sharp-edged.)
The capacitor has to see the common mode voltage. Where do you put the other end?
Off the top of my head? Make a little gadget that’s an inductor and capacitor, in parallel, tuned to 60 Hz (i.e. a band-stop filter) and, in series with that, a Y capacitor. Wire up this gadget in place of the Y capacitor, so you end up with two of them (line to output negative and other line to output negative, perhaps). Or maybe you just have one, and you connect it between the normal pair of Y caps and the output. It will have very high impedance at 60Hz, enough impedance from DC to a few kHz to avoid conducting problematic amounts of current at DC or various harmonics, and low enough impedance at high frequencies to help with EMI. It might need a couple types of capacitor in parallel in the band-stop part to avoid having the high-frequency impedance of the presumably large-ish capacitor in parallel with the inductor being a problem, and it might be an interesting project to tune it well enough to really remove the annoying touch current, especially if you believe in 50Hz and 60Hz operation. Maybe a higher order design would work better, but the size would start to get silly.